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DIFFERENTIAL EQUIVALENCE CLASSES FOR METRIC
PROJECTIONS AND OPTIMAL BACKWARD ERRORS

JOSEPH F. GRCAR

This paper is dedicated to John von Neumann

at the centennial of his birth, on 28th December 1903.

Abstract. It is shown that the sensitivities of metric projections to changes
in their sets can be determined by inspecting classes of suitably equivalent

functions. The proof depends on parameterizations of theorems related to the
mean value and implicit function theorems. The result justifies a common
approach to the types of perturbation analyses used in numerical analysis and

optimization theory. The method is illustrated by establishing a dependency
that John von Neumann suggested among certain errors of numerical calcula-
tions, and by establishing the directional differentiability in some cases of the

distance between a fixed point and a deforming set.

1. Introduction

Perturbation analysis is the study of small changes among interdependent quan-
tities. If the functional dependencies are not obviously differentiable, then the anal-
yses depend on reasoning specific to the problems on hand. Methods are highly
developed for many subjects such as control theory, dynamical systems, numerical
analysis, optimization theory, mathematical physics, and various technical fields.

This paper advances a common approach to the kinds of perturbation analyses
that occur in numerical analysis and optimization theory. The idea is to group
functions with similar perturbational properties into equivalence classes. To answer
a perturbational question about a function, one examines its equivalence class to
find another function for which the question is more easily answered. This has ever
been the practice for differentiable functions, whose perturbations are investigated
by replacing them by their linear tangents.

The focus of this paper is the perturbation analysis of a specific kind of function
called a metric projection. These are ubiquitous in mathematics so it is natural that
they should underlie many perturbational questions. An interesting twist is that
the perturbations of interest are those of the set that defines the metric projection
rather than of the point that is being projected.
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Specifically, this paper identifies some functions that are equivalent in a pertur-
bational sense to the distance between a point and a deformable set. The set is
implicitly defined by equality constraints in a finite dimensional Banach space, and
it is deformable by a parameterization of its implicit definition; the point is a mem-
ber of the undeformed set. These limitations are consistent with the more studied
case of a fixed set and a variable point, which has been examined in this journal and
the Proceedings over several years. The proofs depend on parameterized versions of
theorems related to the mean value theorem and to the implicit function theorem;
these supporting results may have independent interest.

The final part of the paper applies the method of perturbation analysis to an-
swer two questions in numerical analysis and mathematical programming. It es-
tablishes the directional differentiability of the distance function, and estimates
optimal backward errors. These applications motivate the work. The question in
numerical analysis is related to some lesser-known work of John von Neumann.

This is the plan of the paper. The remainder of this introduction describes the
two applications. Section 2 introduces the equivalence relations for perturbations.
Sections 3, 4, and 5 identify members of the equivalence classes for metric projec-
tions with deformable sets. Section 6 returns to the applications in optimization
theory and numerical analysis. Section 7 lists open questions.

1.1. An Optimization Problem. A point y1 that attains the distance from a
given point y0 to a closed set S,

dist(y0, S) = min
y ∈ S

‖y − y0‖ ,

is called a metric projection of y0 onto S, and is written y1 = PS(y0). Some
authors use this notation for the set of nearest points rather than for a selected
nearest point. Metric projections characterize convex sets [37] [38], and they are
the most general best approximation problems, so there is broad interest in their
differential properties [23].

Differentiability with respect to y0 for a fixed set S is the more studied case. The
large literature can be regarded as exploring situations that are complementary to a
basic negative result: although in Hilbert spaces PS(y0) is uniquely defined for sets
that are closed and convex [65], Kruskal [26] and Shapiro [48] show it need not be
directionally differentiable even in the Euclidean plane.1 The situations under which
some differentiability occurs can be classified several ways, according to whether
they involve: (1) points internal or external to S, (2) convex or arbitrary sets, (3)
Hilbert or Banach spaces, (4) the metric projection or the distance function, and (5)
spaces with finite or unspecified dimension. Many of the 25 alternatives have been
considered: Table 1 surveys the literature, which Table 2 summarizes for dist(y, S).

It is generally conceded that it is more difficult to investigate the sensitivity of
an optimal value whose feasible set is subject to perturbation [6, p. 278]. Thus, in
contrast to the many results for perturbations of y0, the differentiability of met-
ric projections with respect to S (which is the problem of interest in this paper)
is less well understood. The problem is encountered primarily in the sensitivity
analysis of mathematical programs, which is surveyed by Bonnans and Shapiro [5]
[6] and Levitin [27]. The uses of sensitivity analysis are to interpret mathemati-
cal programming models [11], to find optimality conditions [43], and to establish

1Shapiro [47] discusses the several definitions that are used for directional differentiability.
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Table 1. Differentiability results for PS(y0) and dist(y0, S), with
respect to y0, for a fixed, closed set S.

(1) External points, y0 /∈ S:
(a) Convex S:

(i) In Hilbert spaces, Haraux [18] finds a class of sets for which PS(y0)
is directionally differentiable. Fitzpatrick and Phelps [12]
characterize the sets whose metric projections are k times
continuously Fréchet differentiable.

(ii) In Banach spaces, remarkably, Holmes [24, p. 99] shows that
dist(y0, S) always is continuously Fréchet differentiable in the spaces
with differentiable norms. A proof just for Hilbert spaces is due to
Moreau [24, p. 88–89] [33, p. 286].

(b) Arbitrary S:
(i) In Hilbert spaces, Shapiro [49] finds nearly convex sets for which

PS(y0) is uniquely defined and directionally differentiable. Clarke,
Stern and Wolenski [9] identify the sets S that have envelopes of
uniform thickness on which dist(·, S) is continuously Fréchet
differentiable. Poliquin, Rockafellar and Thibault [40] characterize
the y0 and S for which dist(·, S) is continuously differentiable in a
neighborhood of y0.

(2) Internal points, y0 ∈ S (the interesting case is y0 ∈ bd(S)):
(a) Convex S:

(i) In Hilbert spaces, PS(y0) is directionally differentiable always. The
earliest proof appears to be Zarantonello’s [65, p. 300], see also [31,
p. 94] and later [18]. Mignot [32] extends this result to projections
defined by nonsymmetric bilinear forms.

(ii) In Banach spaces, Phelps [39, p. 974] finds sets in certain spaces for
which PS(y0) is well-defined and directionally differentiable.

(b) Arbitrary S:
(i) In finite dimensional Banach spaces, Shapiro [45] characterizes the S

for which dist(y0, S) is directionally differentiable.

Table 2. Differentiability of dist(y0, S) with respect to y0 for a
fixed, closed set S. See Table 1 for references and elaboration.

y0 /∈ S y0 ∈ S

convex S
dist(y0, S) is continuously
Fréchet differentiable (C1) in
Banach spaces with dif. norms

dist(y0, S) is directionally
differentiable (d.d.) in Hilbert
spaces

arbitrary S
points and sets for which
dist(y0, S) is in C1 have been
characterized in Hilbert spaces

sets for which dist(y0, S) is
d.d. have been characterized
in finite dim. Banach spaces

the convergence of algorithms [31] [39]. Without loss of generality from a prac-
tical perspective, the theory typically assumes that the objective functions are at
least differentiable. As a result much of the sensitivity analysis of optimization
problems is inapplicable to metric projections because the function ‖y − y0‖ is not
differentiable.
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It is possible and instructive to apply the general theory to minimizing squared
distances in Hilbert spaces. Bonnans and Shapiro [6, p. 434] consider the following
optimization problem (in the notation of this paper),

ν(x) = min
y : F (y, x) ∈ C

‖y − y0‖22 ,

under quite general conditions:
(i) F : Y ×X → Z is twice continuously differentiable,
(ii) X and Z are Banach spaces and Y is a Hilbert space,
(iii) C is a closed convex subset of Z,
(iv) F (y0, x0) = 0 for some x0, and
(v) Robinson’s constraint qualification [6, p. 65] [42, p. 501],

0 ∈ int(F (y0, x0) + D1F (y0, x0)Y − C) ,

where set-arithmetic is pointwise, and D1F is the partial Fréchet derivative
with respect to the first argument of F .

The theory draws many conclusions from these hypotheses, among them that there
is a neighborhood N of x0 and a continuous function y : N → Y , with y(x0) = y0,
so that y(x) is the unique solution of the minimization problem for ν(x). Moreover,
y(x) is directionally differentiable at x0, and in particular, the derivative in the
direction ∆x is the solution of a related optimization problem,

lim
t → 0+

ν(x0 + t∆x)− ν(x0)
t

= min
∆y : DF (y0, x0)(∆y, ∆x) ∈ TC(F (y0, x0))

‖∆y‖22 ,

where TC(z) is the contingent (Bouligand) cone that is tangent to C at z,

TC(z) =
{

∆z ∈ Z : lim inf
t → 0+

dist(z + t∆z, C)
t

= 0
}

.

Note that if ∆y is the directional derivative of y(x), then

ν(x0 + t∆x) = ‖y(x0 + t∆x)− y0‖22 ≈ ‖y(x0) + t∆y − y0‖22 = ‖t∆y‖22
so ‖∆y‖2 is the directional derivative of the un-squared distance, ν(x)1/2.

This result, for metric projections in Hilbert spaces, specializes to finite dimen-
sional vector spaces and equality constraints as follows. Let F : Rm × Rn → Rp

and C = {0}, so that the minimization problem becomes

µ(x) = min
y : F (y, x) = 0

‖y − y0‖2 ,

where F (y0, x0) = 0 for some y0. In these circumstances Robinson’s condition, (v),
is simply the hypothesis that that D1F (y0, x0) ∈ hom(Rm, Rp) is onto (equivalently,
it has full row rank when realized as a Jacobian matrix). In this notation the
conclusion is that the metric projection µ(x) is defined on a neighborhood of x0 at
which it has the directional derivative,

(1) lim
t → 0+

µ(x0 + t∆x)− µ(x0)
t

= min
∆y : DF (y0, x0)(∆y, ∆x) = 0

‖∆y‖2 .

The methods of this paper establish equation (1) in the more general situa-
tion that the norm is any whatsoever and under the weaker hypothesis that F is
only continuously differentiable. Aside from the intrinsic interest of this for metric
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projections, the conclusion is interesting because it suggests that second-order hy-
potheses, Bonnans and Shapiro’s condition (i), may be unnecessarily strong for the
first-order sensitivity analysis of mathematical programming problems.

1.2. A Problem from Numerical Analysis. In 1946, Alan Turing visited John
von Neumann at Princeton to exchange ideas for building computing machines
upon the end of World War II. An issue they discussed [14, p. 291] proved to be an
enduring puzzle: how to determine the net effect of rounding errors on a numerical
calculation. Von Neumann’s and Turing’s thoughts can be found in separate papers,
[34] and [61], and entwined in subsequent work.

Von Neumann and his collaborator Herman Goldstine apparently were the first
to make an unintuitive observation that became paradigmatic. The data from which
a calculation begins must be prepared, by measuring them for example, so “it seems
reasonable to take the errors of [preparation] into consideration when we analyze
what concept and what degree of approximation [in the final result] are significant”
[34, p. 1092]. To that end von Neumann and Goldstine noted that an inaccurately
calculated result may be correct for some perturbation of the calculation’s initial
data. They suggested that the size of such compensating perturbations to the data
might be used to assess the calculation’s accuracy. Data perturbations that account
for calculation errors now are called backward errors [64, p. 3].

The determination of minimal backward errors can be viewed as a metric pro-
jection in the following way. In the terminology of numerical analysis, the “data”
are y, the “solution” is x, and the numerical problem is defined by F (y, x) = 0
where F is the “residual” function. An instance of the numerical problem is given
by some data, y0, for which there is a “true” solution, x0. Given an approximate
solution, x ≈ x0, the backward error problem is to find the minimal size µ(x) of
data perturbations y − y0 for which F (y, x) = 0,

µ(x) = min
y : F (y, x) = 0

‖y − y0‖ .

Formulas for µ(x) have been derived in many specific cases. Each has an un-
derlying numerical problem, which defines F , and a norm or norms with respect
to which the size of minimal perturbations have been found. Table 3 surveys these
results. Sun [54, p. 358] observed that the residual seems always to occur in expres-
sions for µ(x). This apparent dependence of the minimal backward error on the
residual was anticipated by von Neumann and Goldstine. While studying matrix
inversion, they remarked that bounds for the backward error can be derived from
bounds for the residual. “We leave the working out of the details, which can be
prosecuted in several different ways, to the reader” [34, p. 1093].

This paper justifies the observations of von Neumann, Goldstine, and Sun in
general circumstances. Rather than considering a specific calculation, as is done
in numerical analysis, this paper addresses all calculations. A general estimate for
the size of minimal backward errors is found that is both optimal in a differential
sense and easier to evaluate than the original metric projection. Further, the size
of minimal backward errors is shown to have an unique estimate as a norm of the
underlying numerical problem’s residual.
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Table 3. Results for optimal backward errors of specific numerical problems.

Linear equations: Optimal data perturbations were first considered by Oettli
and Prager [35] and then by Rigal and Gaches [41] for systems of algebraic
linear equations (LE). For example, an elementary conclusion is that the
smallest perturbation E to a matrix A that is needed to make a vector x satisfy
(A + E)x = b is

µ(LE)(x) = min
E : (A + E)x = b

‖E‖ =
‖Ax − b‖

‖x‖ ,

where the matrix has the operator norm determined by the two vector norms.
(An explanation of the specialized norms that are sometimes used in this and
other cases is beyond the scope of this discussion.) Formulas for various minima
were found subsequently for perturbations to the data of symmetric linear
equations [7] [50], of Toeplitz equations [19] [62], of Vandermonde equations [3]
[58], of equations with multiple right sides [20], and of minimum-norm solutions
for underdetermined linear equations [59].

Least squares: Waldén, Karlson and Sun [63] were the first to find formulas for
the minimal size of backward errors for least squares problems (LS). For
example of their results, consider the the linear regression problem,

min
v

‖b − Av‖2 ,

which is equivalent to the equation At(b − Av) = 0. The size of smallest
perturbations E to the matrix A that is needed to make a given vector x a
solution of the linear regression problem is

µ(LS)(x) = min
E : (A + E)t[b− (A + E)x] = 0

‖E‖2
F =

‖r‖2
2

‖x‖2
2

+ min {0, λ} ,

where ‖ · ‖F is the Frobenius norm, where r = b − Ax, and where λ is the
smallest eigenvalue of a certain matrix,

λ = λmin

(
AAt − rrt

‖x‖2
2

)
.

An alternate expression for the minimum was given by Higham [22, p. 405] [63,
p. 275]. Other estimates and formulas were found for data perturbations for
these problems [17] [25] [30] [57], for problems with with multiple right sides
[56], for linearly constrained problems [10], and for spherically constrained least
squares problems [29].

Matrix factorizations: Minimal backward errors for matrix factorizations have
been considered for the Choleski and QR factorizations [53], and for spectral
decompositions of Hermitian matrices [8] [55].

Invariant subspaces: Closely related to factorization of matrices is the
construction of invariant subspaces of linear operators. Minimal backward
errors were considered for individual eigenvalues and eigenvectors [13] [21] [51],
for Krylov subspaces [52], and for other invariant subspaces [54].

2. Equivalent Optimizations

2.1. Overview of the Approach. The approach used here to study perturbed
metric projections is a formalization of one introduced by Shapiro [44] [46]. The
idea is to study the local response of a parameterized optimization problem by
simplifying the problem in a way that does not materially alter the response.
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Specifically, for both of the applications discussed in the Introduction, the value

(2) µ(x) = min
y : F (y, x) = 0

‖y − y0‖

has interest only when x ≈ x0 where (y0, x0) solves the constraint equation, F (y, x) =
0. As the parameter x approaches x0, the implicit function theorem implies that
the points where the minima occur converge to y0, in which case the constraint
function may be approximated by its tangent at the limit (assuming the function is
sufficiently smooth). In this way one is naturally led to the idea of perturbing equa-
tion (2) by altering the constraint. To that end, there are two basic requirements
for the altered problems.

• The optimal values of the altered problems should mimic how µ(x) varies
with x.

• Since µ(x) is of interest only when x ≈ x0, good approximations are
needed only near x0.

The novelty of the present approach is to formalize these requirements by an
equivalence relation among functions of x. The relation is chosen so that if two
functions are equivalent, then it shall be agreed that they are acceptable estimates
for one another. Next, parameterized minimization problems are identified that
are simpler than equation (2) but whose optimal values belong to the same equiv-
alence class as µ(x). In this way equation (2) is made simpler while changing the
optimal-value function only in acceptable ways. For the purposes of this paper,
“acceptable” means that µ(x)’s first-order sensitivity to the parameter x, at x0,
should be invariant with respect to the changes in the function.

2.2. Equivalence Relations. The following equivalence relation is appropriate
when differentiability at x0 is the object of study.

Definition 2.1 (Differential Equivalence). The functions f and g defined on a
neighborhood of x0 ∈ Rn with values in Rp are called differentially equivalent,

f
∂'
x0

g ,

provided f − g is Fréchet differentiable at x0 and the derivative vanishes there;
equivalently,

(3) lim
x → x0

‖f(x)− g(x)‖
‖x− x0‖

= 0 .

Lemma 2.2. Definition 2.1’s '∂
x0

is an equivalence relation.

If g is an affine function, then equation (3) is essentially the definition for the
Fréchet derivative of f at x0. If additionally the limit is restricted to a ray ema-
nating from x0, then equation (3) implies a form of directional derivative. In this
way f ’s differential properties are determined by its equivalence class.

A simpler equivalence relation is that any approximation to f(x) should be
relatively more accurate as x approaches x0.

Definition 2.3 (Rational Equivalence). The real-valued functions f and g defined
on a neighborhood of x0 ∈ Rn are called rationally equivalent,

f
÷'
x0

g ,
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provided for every ε > 0 there is a neighborhood N(ε) of x0 such that x ∈ N(ε)
implies

(4) (1− ε)g(x) ≤ f(x) ≤ (1 + ε)g(x) .

Lemma 2.4. Definition 2.3’s '÷x0
is an equivalence relation.

Definition 2.3’s rational equivalence is stronger than Definition 2.1’s differential
equivalence. For example, two monomials c1x

n1 and c2x
n2 are rationally equivalent

at 0 if an only if they are equal, but all monomials with vanishing derivatives at 0
are differentially equivalent there.

For equation (2)’s function µ(x), Definition 2.3 implies Definition 2.1. Thus
equation (4), which is easier to verify in proofs, imposes equation (3)’s differential
approximation. The proof of this is based on the Lipschitz continuity of µ(x) at
x0, which is easily established for metric projections. The following notation and
assumptions are used in this proof and throughout the paper.

Hypothesis 2.5. Assume

• D ⊆ Rm × Rn is a neighborhood of (y0, x0),
• F : D → Rp is continuously differentiable.

Notation 2.6. Under Hypotheses 2.5,

• When it exists,

µ(x) = min
y : F (y, x) = 0

‖y − y0‖ .

• D1F (y, x) ∈ hom(Rm, Rp) is the partial Fréchet derivative of F at (y, x)
with respect to the first block of variables, and similarly for D2F with
respect to the second block of variables.

• Ty0(y, x) = D1F (y0, x)(y−y0)+F (y0, x) is the linear function of y, param-
eterized by x, whose graph is tangent to F (y, x)’s at y = y0.

There seems to be no standard notation for the partial derivatives in Notation 2.6:
“D(1)F” is used in [4], “∂1F” in [36], and “DyF” in [6]. This paper chooses to
write “D1F .”

Lemma 2.7 (Lipschitz Continuity of µ(x) at x0).

• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that
D1F (y0, x0) is onto.

⇒ There is a constant L > 0 and a neighborhood N
(2.7)
x0 of x0 where

Definition 2.6’s function µ(x) exists, and µ(x) ≤ L‖x− x0‖.

Proof. The implicit function theorem says x0 has a neighborhood N on which
there is a continuously differentiable function φ : N → Rm such that φ(x0) = y0

and F (φ(x), x) = 0. Thus µ(x)’s minimization problems have feasible points for all
x ∈ N . The feasible sets are closed because F is continuous, so the minimal distance
to y0 is attained. This means µ is well-defined on N . Since φ is continuously
differentiable, x0 has a compact, convex neighborhood N

(2.7)
x0 ⊆ N on which φ

is Lipschitz continuous with Lipschitz constant L. Thus µ(x) ≤ ‖φ(x) − y0‖ =
‖φ(x)− φ(x0)‖ ≤ L‖x− x0‖ for every x ∈ N

(2.7)
x0 . �
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Corollary 2.8. Continuing Lemma 2.7, for Notation 2.6’s function µ(x) and for
any function f ,

f
÷'
x0

µ ⇒ f
∂'
x0

µ .

Proof. Let N(ε) be the neighborhoods in Definition 2.3 for the equivalence f '÷x0
µ,

and let N
(2.7)
x0 be Lemma 2.7’s neighborhood. If x ∈ N(ε) ∩N

(2.7)
x0 , then (1 −

ε)µ(x) ≤ f(x) ≤ (1 + ε)µ(x), so |f(x) − µ(x)| ≤ ε µ(x) ≤ εL‖x − x0‖, which
proves that the limit in equation (3) vanishes. �

2.3. Equivalence Classes. All the optimization problems in Table 4 are differen-
tially equivalent at x0, in the sense of Definition 2.1. The Table’s problems differ
from the original problem, (P ), first by linearizing the constraint with respect to the
dependent variable y, which is problem (PT ), and then by additionally linearizing
the constraint with respect to the independent parameter x, which is problem (P`).
An intermediate problem, (P0), removes the bilinear variation in problem (PT )’s
constraint by fixing the bilinear term at x0.

Table 4. Optimization problems parameterized by x whose op-
timal values are differentially equivalent to Notation 2.6’s func-
tion µ(x) at x = x0. Besides Hypothesis 2.5, it is assumed that
F (y0, x0) = 0, and D1F (y0, x0) is onto. These expressions use the
notation ∆x = x− x0 and ∆y = y − y0.

name value minimization form dual, maximization form

(P ) µ(x) min
y : F (y, x) = 0

‖∆y‖

(PT ) µT (x) min
y : D1 F (y0, x)∆y + F (y0, x) = 0

‖∆y‖ max
f : ‖D1 F (y0, x)∗f‖ ≤ 1

f(F (y0, x))

(P0) µ0(x) min
y : D1 F (y0, x0)∆y + F (y0, x) = 0

‖∆y‖ max
f : ‖D1 F (y0, x0)

∗f‖ ≤ 1

f(F (y0, x))

(P`) µ`(x) min
y : DF (y0, x0)(∆y, ∆x) = 0

‖∆y‖ max
f : ‖D1 F (y0, x0)

∗f‖ ≤ 1

f(D2F (y0, x0)∆x)

What is remarkable about the present situation is that Definition 2.1’s equiv-
alence class for µ(x) is invariant with respect to all these changes. Whether this
is true for parameterized optimization problems that are more general than metric
projections with equality constraints, is open. Figure 1 indicates where Table 4’s
equivalences are established in this paper.

3. First Equivalence, (P )min ⇔ (PT )min

The first equivalence to be proved (in the notation of Table 4),

µ(x)min
÷'
x0

µT (x)min ,

says that the nonlinear constraint F (y, x) = 0 can be replaced by the linear con-
straint D1F (y0, x)∆y + F (y0, x) = 0. Figure 2 depicts the several lemmas that
contribute to the proof of this. Those in the central column — Lemma 3.1, Corol-
lary 3.2, and Lemma 3.10 — are interesting in their own right. The first two extend
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(P )minKS

Thm. 3.11 rational equivalence

��
(PT )min

ks
Thm. 4.4

duality equality

+3 (PT )maxKS

Thm. 5.1 rational equivalence

��
(P0)min

ks
Thm. 4.4

duality equality

+3 (P0)maxKS

Thm. 6.4 differential equivalence

��
(P`)min

ks
Thm. 4.4

duality equality

+3 (P`)max

Figure 1. Where and how Table 4’s equivalences are proved.

uniformly
parameterized
mean value
theorem,

Lemma 3.1

��

matrix lower
bound,

Definition 3.3

��
uniformly

bounded Fréchet
quotient,

Corollary 3.2

��

uniform lower
bound for partial

derivatives,
Lemma 3.7

��xxrrrrrrrrrr

Lipschitz
continuity of µ,

Lemma 2.7

&&NNNNNNNNNNN

uniformly
collocated
level sets,

Lemma 3.10

��

Lipschitz
continuity of µT ,

Corollary 3.8

wwoooooooooooo

1st equivalence,
Theorem 3.11

Figure 2. Dependencies for the proof of the first equivalence.

some basic results in real analysis to parameterized functions. The third is related
to the implicit function theorem in that it provides a local description of a function’s
level sets.

3.1. Uniformly Parameterized Mean Value Theorem. It is well known that
if f is continuously differentiable, then for every y0 and every ε > 0 there is a
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neighborhood Ny0(ε) of y0 where

(5) y1, y2 ∈ Ny0(ε) ⇒ ‖f(y1)− f(y2)−Df(y0)(y1 − y2)‖ ≤ ε ‖y1 − y2‖ .

This serves as a mean value theorem in multiple dimensions. It has been discussed
many times [28, p. 212, notes for §7.1–4]. For example, Bartle [4, p. 377, lemma
41.4] calls it the “key lemma” for mapping theorems that are related to the implicit
function theorem. Ortega and Rheinboldt [36, p. 72, lemma 3.2.10] show that
equation (5) actually is equivalent to the continuity of the derivative. Here, this
surrogate mean value theorem is generalized to parameterized functions.

Lemma 3.1 (Uniformly Parameterized Mean Value Theorem).
• Assume Hypothesis 2.5.
⇒ For every ε > 0 there is a neighborhood N

(3.1)
y0 (ε)×N

(3.1)
x0 (ε) ⊆ D of (y0, x0)

such that for all y1, y2, y3 ∈ N
(3.1)
y0 (ε) and all x ∈ N

(3.1)
x0 (ε),

(6) ‖F (y1, x)− F (y2, x)−D1F (y3, x)(y1 − y2)‖ ≤ ε ‖y1 − y2‖ .

Proof. It is well known [4, p. 376, lemma 41.3] [36, p. 70, lemma 3.2.5] that if
D ⊆ Rm is a convex, open set, and if f : D → Rp is continuously differentiable,
then for any y1, y2, y3 ∈ D,

‖f(y1)− f(y2)−Df(y3)(y1 − y2)‖
≤ sup

0 ≤ t ≤ 1

‖Df(ty1 + (1− t)y2)−Df(y3)‖ ‖y1 − y2‖ .

It is always possible to find a convex neighborhood Y0 of y0, and a neighborhood
X0 of x0, so that Y0 ×X0 ⊆ D. Thus, for any any y1, y2, y3 ∈ Y0 and x ∈ X0,

(7)
‖F (y1, x)− F (y2, x)−D1F (y3, x)(y1 − y2)‖

≤ sup
0 ≤ t ≤ 1

‖D1F (ty1 + (1− t)y2, x)−D1F (y3, x)‖ ‖y1 − y2‖ .

It is further possible to choose Y0 and X0 so that Y0 × X0 is bounded and
cl(Y0 ×X0) ⊆ D. Thus K = cl(Y0)× cl(Y0)× cl(X0) is compact. Since D1F (y, x)
is continuous, therefore g(y1, y2, x) = D1F (y1, x)−D1F (y2, x) is uniformly contin-
uous on K. Let the norm for the domain of g(y1, y2, x) be max{‖y1‖, ‖y2‖, ‖x‖}.
The uniform continuity means, for every ε > 0 there is a δ(ε) > 0 so that if
(y1, y2, x), (y′1, y

′
2, x

′) ∈ K with max {‖y1 − y′1‖, ‖y2 − y′2‖, ‖x − x′‖} ≤ δ(ε), then
‖g(y1, y2, x)− g(y′1, y

′
2, x

′)‖ ≤ ε.
If y1, y2 ∈ By0(δ(ε)) ∩ Y0, then all convex combinations of these points also lie

in this set. If additionally y3 ∈ By0(δ(ε)) ∩ Y0 and x ∈ Bx0(δ(ε)) ∩X0, then

‖D1F (ty1 + (1− t)y2, x)−D1F (y3, x)‖

= ‖g(ty1 + (1− t)y2, y3, x)‖

= ‖g(ty1 + (1− t)y2, y3, x)− g(y0, y0, x0)‖

≤ ε .

Thus the supremum in equation (7) is bounded by ε provided y1, y2, y3 ∈ By0(δ(ε))∩
Y0 and x ∈ Bx0(δ(ε)) ∩X0. �

Lemma 3.1 gives conditions under which the Fréchet differential is uniformly
approximating with respect to a parameter.
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Corollary 3.2 (Uniformly Bounded Fréchet Quotient). Lemma 3.1’s
neighborhoods also satisfy, for all y ∈ N

(3.1)
y0 (ε) and x ∈ N

(3.1)
x0 (ε),

(8) ‖F (y, x)− Ty0(y, x)‖ ≤ ε ‖y − y0‖ ,

where Ty0(y, x) is the parameterized tangent function of Notation 2.6.

Proof. Choose y1 = y, y2 = y0 and y3 = y0 so that the formula in Lemma 3.1’s
equation (6) becomes

F (y1, x)− F (y2, x)−D1F (y3, x)(y1 − y2)

= F (y, x)− F (y0, x)−D1F (y0, x)(y − y0)

= F (y, x)− Ty0(y, x) .

�

3.2. Matrix Lower Bound. The matrix lower bound, ‖A‖`, is analogous to the
matrix norm but with subtly different properties. The concept was first described by
von Neumann [34, p. 1042] essentially for nonsingular matrices. It can be extended
to all nonzero matrices using ideas of Banach [1, p. 150, chapter 10, theorem 10].
See [16] for further discussion of this concept.

Definition 3.3 (Matrix Lower Bound [16, def. 2.1]). Let A be a nonzero matrix.
The matrix lower bound, ‖A‖`, is the largest of the numbers, m, such that for every
y in the column space of A, there is some x with Ax = y and m ‖x‖ ≤ ‖y‖.

Lemma 3.4. [16, lem. 2.2] The matrix lower bound exists and is positive for every
nonzero matrix.

Lemma 3.5. [16, cor. 4.3] The matrix lower bound is continuous on the set of full
rank matrices.

Lemma 3.6. [16, thm. 5.1] The matrix lower bound of a full rank matrix is the
distance to the set of rank deficient matrices.

The immediate use of the lower bound is the following lemma, which is used to
show that µT (x)min is well-defined in a neighborhood of x0 and Lipschitz continuous
at x0.

Lemma 3.7 (Uniform Lower Bounds for Partial Derivatives).
• In addition to Hypothesis 2.5, suppose that D1F (y0, x0) is onto.
⇒ There is a compact neighborhood K

(3.7)
x0 of x0 and a number m` > 0 such

that every x ∈ K
(3.7)
x0 and u ∈ Rp have some w ∈ Rm (which depends on x

and u) so that D1F (y0, x)w = u and m`‖w‖ ≤ ‖u‖.

Proof. Choose some bases for Rm and Rp so that these spaces are represented by
real column vectors. The linear transformations D1F (y0, x) are then represented
by p×m matrices, A(x). These matrices are continuous functions of x because by
hypothesis F is continuously differentiable. That D1F (y0, x0) is onto is equivalent
to A(x0) having full row rank, p. From Lemmas 3.4 and 3.6, A(x0) has a neigh-
borhood of matrices NA(x0) all of which have full row rank. From the continuity
of A(x), x0 has a neighborhood Nx0 all of whose matrices lie in NA(x0). Hence the
mappings D1F (y0, x) are onto for all x ∈ Nx0 . Finally, since ‖A(x)‖` is continuous
and positive on Nx0 by Lemmas 3.4 and 3.5, it is possible to choose a compact
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neighborhood K
(3.7)
x0 ⊆ Nx0 of x0 where ‖A(x)‖` is uniformly bounded below by

some m` > 0. �

Corollary 3.8 (Lipschitz Continuity of µT (x)min at x0).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
⇒ There is a constant LT > 0 and a neighborhood N

(3.8)
x0 of x0 where Table

4’s function µT (x)min is well-defined and µT (x)min ≤ LT ‖x− x0‖.

Proof. Let K
(3.7)
x0 be Lemma 3.7’s compact neighborhood for x0. If x ∈ K

(3.7)
x0 , then

by Lemma 3.7 there is a y ∈ Rm such that

Ty0(y, x) = D1F (y0, x)(y − y0) + F (y0, x) = 0

and m` ‖y − y0‖ ≤ ‖F (y0, x)‖. The equality means that the minimization for
µT (x)min has a feasible point. Since Ty0 is continuous, the feasible set is closed,
so the minimum is attained. Thus µT (x)min is well-defined on K

(3.7)
x0 . It is always

possible to find a convex subneighborhood N
(3.8)
x0 ⊆ K

(3.7)
x0 . Since F (y0, x) is con-

tinuously differentiable, it is also Lipschitz continuous on this set. Let L be the
Lipschitz constant. Finally, for x ∈ N

(3.8)
x0 ,

µT (x)min ≤ ‖y − y0‖ ≤
‖F (y0, x)‖

m`
=
‖F (y0, x)− F (y0, x0)‖

m`
≤ L‖x− x0‖

m`
.

�

3.3. Uniformly Collocated Level Sets. Suppose D is an open set in Rm, on
which f : D → Rn is continuously differentiable. By analogy with real-valued
functions, the set f−1(y) may be called a level set of f .

If f(x0) = 0 and the linear transformation Df(x0) : Rm → Rn is onto, the
implicit function theorem says the level set f−1(0) contains the graph of a smooth
curve passing through x0. Usually the implicit function (which parameterizes the
curve) is emphasized, but the theorem also can be interpreted as describing the level
set of roots. For example [4, p. 384, theorem 41.9 part (b)], there is neighborhood
Nx0 of x0 where the implicit function’s graph is the entire level set.

It is possible to make a geometric comparison between all the level sets of f
and those of its tangent function at x0. Near x0, the corresponding level sets are
always present and they are asymptotically identical [16]. The proof of this is a
modification of a construction apparently due to L. M. Graves [15], see also [4, p.
378, theorem 41.6]. Here, the collocation result is extended to functions that vary
smoothly with a parameter. In this case the distance between the corresponding
level sets is uniformly bounded with respect to changes in the parameter.

Notation 3.9. In whatever space is indicated, let Bc(r) be the open ball with center
c and radius r.

Lemma 3.10 (Uniformly Collocated Level Sets).
• In addition to Hypothesis 2.5, suppose that D1F (y0, x0) is onto.
• Let Ty0(y, x) be Definition 2.6’s linear function of y, parameterized by x,

whose graph is tangent to F (y, x)’s at y = y0.
⇒ For every ε > 0 there is an r(ε) > 0 and a neighborhood N

(3.10)
x0 (ε) of x0 so

By0(r(ε))×N
(3.10)
x0 (ε) ⊆ D.
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⇒ For each pair (y, x) ∈ By0(r(ε)/(1 + ε))×N
(3.10)
x0 (ε),

(1) there exists yT ∈ By0(r(ε)) with

(9) ‖yT − y‖ ≤ ε ‖y − y0‖ and Ty0(yT , x) = F (y, x),

(2) and there exists yF ∈ By0(r(ε)) with

‖yF − y‖ ≤ ε ‖y − y0‖ and Ty0(y, x) = F (yF , x).

Proof. The proof is based on Lemma 3.1’s neighborhoods N
(3.1)
y0 (ρ) and N

(3.1)
x0 (ρ),

for a ρ determined from ε as follows. Let δ = ε/(1 + ε) < 1. Let m` and K
(3.7)
x0 be

as in Lemma 3.7. It is always possible to find an r(ε) > 0 so that

(10) cl(By0(r(ε))) ⊆ N (3.1)
y0

(δ m`) .

With this preparation, the neighborhoods from which the theorem is allowed to
choose y and x are then

y ∈ By0(r(ε)/(1 + ε)) ⊆ cl(By0(r(ε))) ⊆ N (3.1)
y0

(δ m`) ,(11)

x ∈ N (3.10)
x0

(ε) := K(3.7)
x0

∩N (3.1)
x0

(δ m`) ⊆ N (3.1)
x0

(δ m`) .(12)

Note that By0(r(ε))×N
(3.10)
x0 (ε) ⊆ N

(3.1)
y0 (δ m`)×N

(3.1)
x0 (δ m`) ⊆ D as required.

(Part 1.) Since x ∈ K
(3.7)
x0 , there is a yT with

D1F (y0, x)(yT − y) = F (y, x)− Ty0(y, x) ,

m` ‖yT − y‖ ≤ ‖F (y, x)− Ty0(y, x)‖ .

The equality and some algebra imply Ty0(yT , x) = F (y, x), which is part of equation
(9), while the inequality and equations (11) and (8) imply

‖yT − y‖ ≤ ‖F (y, x)− Ty0(y, x)‖
m`

≤ δ m` ‖y − y0‖
m`

= δ‖y − y0‖ < ε‖y − y0‖ ,

which is the other part of equation (9). From this follows ‖yT −y0‖ ≤ (1+ε)‖y−y0‖,
so yT ∈ By0(r(ε)) by the choice of y in equation (11). This membership is the
remaining conclusion in Part 1.

(Part 2.) Let y1 = y, so the following conditions are satisfied for j = 0,

(1j) ‖yj+1 − yj‖ ≤ δj ‖y − y0‖ ,

(2j) ‖F (yj+1, x)− Ty0(y, x)‖ ≤ δ m` ‖yj+1 − yj‖ .

The first is trivial; the second is by Corollary 3.2 (with ε = δ m`), which is applicable
by the choice of y and x in equations (11) and (12).

Summing (1j) for 0 ≤ j ≤ k gives

‖yk+1 − y0‖ ≤
k∑

j=0

‖yj+1 − yj‖ ≤
1− δk+1

1− δ
‖y − y0‖ < (1 + ε) ‖y − y0‖ .

This combines with y ∈ By0(r(ε)/(1 + ε)) to place yk+1 ∈ By0(r(ε)). Therefore
yk+1 ∈ N

(3.1)
y0 (δ m`) from equation (10), so the evaluation of F (yk+1, x) in condition

(2k) is always well-defined when (1j) holds for 0 ≤ j ≤ k.



DIFFERENTIAL EQUIVALENCE CLASSES 15

Suppose y0, y1, . . . , yn have been constructed to satisfy (1j) and (2j) for 0 ≤
j ≤ n−1. As in Part (1) but with a change of sign, Lemma 3.7 says there is a yn+1

with
D1F (y0, x)(yn+1 − yn) = − [F (yn, x)− Ty0(y1, x)] ,

‖D1F (y0, x)‖` ‖yn+1 − yn‖ ≤ ‖F (yn, x)− Ty0(y, x)‖ .

The inequality and conditions (2n−1) and (1n−1) imply condition (1n),

‖yn+1 − yn‖ ≤
‖F (yn, x)− Ty0(y, x)‖

‖D1F (y0, x)‖`

≤ δ m` ‖yn − yn−1‖
m`

≤ δ m` δn−1‖y − y0‖
m`

= δn ‖y − y0‖ .

It is therefore possible to evaluate F (yn+1, x). Condition (2n) now holds since

‖F (yn+1, x)− Ty0(y, x)‖ = ‖F (yn+1, x)− F (yn, x)−D1F (y0, x)(yn+1 − yn)‖

≤ δ m`‖yn+1 − yn‖ .

The equality above is from the choice of yn+1 and from some algebra which, beware,
is not straightforward; the inequality is from equation (6), which is applicable
because yn, yn+1 ⊆ N

(3.1)
y0 (δ m`).

In this way a sequence {yn} ⊆ By0(r(ε)) is constructed that satisfies conditions
(1n) and (2n) for all n. This sequence establishes the three conclusions of Part 2.
The sequence is a Cauchy sequence by (1n), so it has a limit yF ∈ cl(By0(r(ε))).
Passing to the limit in (2n) shows F (yF , x) = Ty0(y, x). Summing (1j), now for
1 ≤ j ≤ n, gives

‖yn+1 − y‖ ≤ ‖yn+1 − y1‖ ≤
n∑

j=1

‖yj+1 − yj‖ ≤ δ
1− δn

1− δ
‖y − y0‖ ,

which in the limit becomes ‖yF − y‖ ≤ δ(1− δ)−1‖y − y0‖ = ε‖y − y0‖. �

3.4. Proof of the First Equivalence.

Theorem 3.11 ((P )min ⇔ (PT )min).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
⇒ There is a neighborhood of x0 where both of Table 4’s optimization

problems (P )min and (PT )min are well-defined. Their values are rationally
equivalent at x0 in the sense of Definition 2.3.

Proof. By Lemma 2.7, x0 has a neighborhood N
(2.7)
x0 where for every x ∈ N

(2.7)
x0

problem (P )min is well-defined, and the optimal value, µ(x), is Lipschitz continuous
at x0 with constant L.

Similarly, by Corollary 3.8, x0 has a neighborhood N
(3.8)
x0 where problem (PT )min

is well-defined for every x ∈ N
(3.8)
x0 , and the optimal value, µT (x), is Lipschitz

continuous at x0 with constant LT .
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Finally, let By0(r(ε)/(1 + ε)) × N
(3.10)
x0 (ε) be Lemma 3.10’s neighborhood of

(y0, x0), and let

N(ε) = N (2.7)
x0

∩ N (3.8)
x0

∩ N (3.10)
x0

(ε) ∩ Bx0

(
r(ε)
1 + ε

min{L−1, L−1
T }

)
.

Suppose x ∈ N(ε). Let µ(x) be attained at y. By Lemma 2.7 and since x ∈
Bx0(L

−1r(ε)/(1 + ε)), therefore

‖y − y0‖ = µ(x) ≤ L‖x− x0‖ < r(ε)/(1 + ε) ,

which places (y, x) ∈ By0(r(ε)/(1 + ε)) × N
(3.10)
x0 (ε). Part 1 of Lemma 3.10 now

asserts there is a yT ∈ By0(r(ε)) with

‖yT − y‖ ≤ ε ‖y − y0‖ and Ty0(yT , x) = F (y, x) = 0 .

Thus

µT (x) ≤ ‖yT − y0‖ ≤ ‖yT − y‖+ ‖y − y0‖ ≤ (1 + ε) ‖y − y0‖ = (1 + ε) µ(x)

which is half of Definition 2.3’s inequality. The same proof establishes the inequality
with µ and µT exchanged, using Corollary 3.8 instead of Lemma 2.7, and Lemma
3.10 part 2 instead of part 1. �

4. Equalities for the Dual Problems

The duality theory for best linear approximation guarantees that the three pairs
of dual problems in Table 4 have equal values. Equalities like these are well known
and can be established in many ways. These are derived from a duality theorem
that Luenberger [28] proves directly from the Hahn-Banach theorem.

Theorem 4.1 (Best Linear Approximation [28, p. 119, theorem 1]). If S is a
subspace and y0 is an element of a real, normed linear space, then

inf
y ∈ S

‖y − y0‖ = max
f ∈ S⊥, ‖f‖ ≤ 1

f(y0) .

Corollary 4.2 (Best Affine Approximation). If A is an affine subspace and y0 is
an element of a real, normed linear space, then

inf
y ∈ A

‖y − y0‖ = max
f ∈ (A− a)⊥, ‖f‖ ≤ 1

f(y0 − a)

in which a is any element of A.

Proof. Replace Theorem 4.1’s y, y0, S by y − a, y0 − a, A− a. �

Corollary 4.3. Let T : Rm → Rp be a linear transformation. For every y0 ∈ Rm,
each optimization problem below is well-defined if and only if h ∈ T (Rm), in which
case the optimal values are equal.

min
y ∈ Rm : Ty = h

‖y − y0‖ = max
g ∈ (Rn)∗ : ‖T∗g‖ ≤ 1

g(Ty0 − h)

Proof. Only the well-posedness of the maximization needs to be considered. If
h ∈ T (Rm), then h = Tu for some u, so the objective function,

g(Ty0 − h) = gT (y0 − u) = (T ∗g)(y0 − u) ≤ ‖T ∗g‖ ‖y0 − u‖ ≤ ‖y0 − u‖ ,

is bounded above for every g ∈ (Rn)∗. The maximum is attained because the
feasible set is closed in a finite dimensional space.



DIFFERENTIAL EQUIVALENCE CLASSES 17

Conversely, suppose the maximization is well posed. If g ∈ T (Rn)⊥ = ker(T ∗),
then g and all its multiples are feasible. Hence g(h) = 0, lest by scaling g it would be
possible to make g(Ty0−h) = g(h) arbitrarily large. Thus h ∈ ⊥[T (Rm)⊥] = T (Rm)
by the usual identification of Rm and (Rm)∗∗.

All that remains is to establish the equality using Corollary 4.2. Choose A =
{y ∈ Rm : Ty = h} and a ∈ A. Now A− a = ker(T ), so

(A− a)⊥ = [ker(T )]⊥ = [⊥(T ∗(Rn)∗)]⊥ = T ∗(Rn)∗ .

This means f ∈ (A−a)⊥ if and only if f = T ∗g for some g ∈ (Rn)∗. Thus Corollary
4.2’s maximization is over all such g with ‖T ∗g‖ = ‖f‖ ≤ 1. Finally, the objective
function is

f(y0 − a) = (T ∗g)(y0 − a) = gT (y0 − a) = g(Ty0 − Ta) = g(Ty0 − h)

as desired. �

Theorem 4.4 ((P•)min ⇔ (P•)max).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
⇒ There is a neighborhood of x0 where Table 4’s problems (PT )min and

(PT )max are well-defined and their values are equal, and similarly for the
(P0) and (P`) pairs of dual problems.

Proof. By Lemma 3.7, D1F (y0, x) is onto for every x ∈ K
(3.7)
x0 . Therefore by

Corollary 4.3 the following problems are well-defined and their optimal values are
equal for every h ∈ Rp.

min
y : D1 F (y0, x)y − h = 0

‖y − y0‖ = max
f : ‖D1 F (y0, x)∗f‖ ≤ 1

f(D1F (y0, x)y0 − h)

Choosing h = D1F (y0, x)y0 − F (y0, x) gives the theorem’s conclusion for the (PT )
dual problems.

In particular D1F (y0, x0) is onto, so also by Corollary 4.3 the following problems
are well-defined and their optimal values are equal for every h ∈ Rp.

min
y : D1 F (y0, x0)y − h = 0

‖y − y0‖ = max
f : ‖D1 F (y0, x0)

∗f‖ ≤ 1
f(D1F (y0, x0)y0 − h)

The choice h = D1F (y0, x0)y0 − F (y0, x) gives the conclusion for the (P0) dual
problems; similarly h = D1F (y0, x0)y0−D2F (y0, x0)(x−x0) for the (P`) problems.

�

5. Second Equivalence, (PT )max ⇔ (P0)max

The second equivalence to be proved (in the notation of Table 4),

µT (x)max
÷'
x0

µ0(x)min ,

says that the feasible set {f : ‖D1F (y0, x)∗f‖ ≤ 1} can be replaced by one that is
independent of x. The proof of this is self-contained.

Theorem 5.1 ((PT )max ⇔ (P0)max).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
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⇒ There is a neighborhood of x0 where both of Table 4’s optimization
problems (PT )max and (P0)max are well-defined. Their values are
rationally equivalent at x0 in the sense of Definition 2.3.

Proof. The hypotheses suffice to invoke Theorem 4.4 which says (PT )max and
(P0)max are well-defined on some neighborhood N (1) of x0. Let C(x) be the feasible
set in these maximizations.

µT (x)max = max
f ∈ C(x)

f(F (y0, x))

µ0(x)max = max
f ∈ C(x0)

f(F (y0, x))

where C(x) = {f ∈ (Rm)∗ : ‖D1F (y0, x)∗f‖ ≤ 1}

The proof has three steps that culminate in equations (14), (15) and (16), respec-
tively.

(Step 1.) If f1 ∈ bd(C(x0)) = {f : ‖D1F (y0, x0)∗f‖ = 1}, then∣∣‖D1F (y0, x)∗f1‖ − 1
∣∣ =

∣∣‖D1F (y0, x)∗f1‖ − ‖D1F (y0, x0)∗f1‖
∣∣

≤ ‖D1F (y0, x)∗f1 −D1F (y0, x0)∗f1‖

≤ ‖D1F (y0, x)∗ −D1F (y0, x0)∗‖ ‖f1‖(13)

= ‖D1F (y0, x)−D1F (y0, x0)‖ ‖f1‖

≤ ‖D1F (y0, x)−D1F (y0, x0)‖ max
f ∈ bd(C(x0))

‖f‖ .

The linear transformation D1F (y0, x0) is onto, so its adjoint D1F (y0, x0)∗ is one-
to-one. Hence ‖D1F (y0, x)∗f‖ defines a norm on the dual space whose closed unit
ball is C(x0). Thus, in the last of equation (13)’s bounds, the maximum is finite
because C(x0) is compact. There also, the difference term converges to 0 as x → x0

because F is continuously differentiable. Altogether, ‖D1F (y0, x)∗f1‖ converges
to 1 uniformly on bd(C(x0)) as x → x0. This means, for every ε > 0, there is a
neighborhood N (2)(ε) of x0, such that

(14) x ∈ N (2)(ε) and f1 ∈ bd(C(x0)) ⇒ 1− ε ≤ ‖D1F (y0, x)∗f1‖ ≤ 1 + ε

(Step 2.) Choose x ∈ N (1)∩N (2)(ε), and then choose any nonzero f ∈ C(x), and
finally let f1 = f/‖D1F (y0, x0)∗f‖ ∈ bd(C(x0)). Assume without loss of generality
that ε < 1. It is now possible to calculate

‖(1− ε)D1F (y0, x0)∗f‖ = (1− ε) ‖D1F (y0, x0)∗f‖
≤ ‖D1F (y0, x)∗f1‖ ‖D1F (y0, x0)∗f‖
= ‖D1F (y0, x)∗f‖
≤ 1 ,

in which the first inequality is from equation (14), and the second is because f ∈
C(x). This proves (1− ε)f ∈ C(x0).
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Similarly, choose any nonzero f0 ∈ C(x0) and let f1 = f0/‖D1F (y0, x0)∗f0‖ ∈
bd(C(x0)). It now follows that

‖(1 + ε)−1D1F (y0, x)∗f0‖ = (1 + ε)−1 ‖D1F (y0, x)∗f0‖
= (1 + ε)−1 ‖D1F (y0, x)∗f1‖ ‖D1F (y0, x0)∗f0‖
≤ ‖D1F (y0, x0)∗f0‖
≤ 1

in which the first inequality is again from equation (14), but now the second is
because f0 ∈ C(x0). This proves (1 + ε)−1f0 ∈ C(x).

These two calculations establish the next implication.

(15) x ∈ N (1) ∩N (2)(ε) ⇒ (1− ε) C(x) ⊆ C(s0) ⊆ (1 + ε) C(x)

(Step 3.) Choose x ∈ N (1) ∩ N (2)(ε), and then choose fT ∈ C(x) that attains
µT (x)max. Equation (15) asserts (1− ε)fT ∈ C(x0), so

µ0(x)max = max
f ∈ C(x0)

f(F (y0, x)) ≥ (1− ε)fT (F (y0, x)) = (1− ε) µT (x)max .

Similarly, choose f0 ∈ C(x0) that attains µ0(x)max. Now equation (15) asserts
(1 + ε)−1f0 ∈ C(x), so

µT (x)max = max
f ∈ C(x)

f(F (y0, x)) ≥ (1 + ε)−1f0(F (y0, x)) = (1 + ε)−1µ0(x)max .

Together these two inequalities provide the final implication,

(16) x ∈ N (1) ∩N (2)(ε) ⇒ (1− ε) µT (x)max ≤ µ0(x)max ≤ (1 + ε)µT (x)max ,

which is Definition 2.3’s equation (4). �

6. Applications

6.1. Canonical Estimates for Backward Errors. For the implicitly defined
numerical problem F (y, x) = 0 with data y and solution x, Section 1.2 formulates
the minimal size of the backward error as

µ(x) = min
y : F (y, x) = 0

‖y − y0‖ ,

where y0 is some data for which x approximates a solution x0, whose precise value is
unknown. Since µ(x) can be evaluated by solving this minimization problem, which
is independent of x0, the backward error y − y0 can be had without knowing the
actual error, x − x0. Thus in principal the accuracy of numerical calculations can
be assessed in von Neumann’s sense based on the expectation of having available
the minimal size of the backward error.

There are impediments to realizing this approach. Expressions for µ(x) are not
easily obtained, in part because the constraints F (y, x) = 0 may be nonlinear,
and even if obtained they may be difficult to evaluate, or interpret. For these
reasons several of the papers cited in Table 3 instead derive estimates for µ(x)
using reasoning specific to the numerical problems they consider.

This section suggests two estimates for µ(x) that apply to all numerical problems.
First, Table 4 indicates that µ(x) '∂

x0
µT (x). This value is guaranteed to accurately

estimate the minimal size of the backward error in both the differential and the
rational senses of Definition 2.1 and 2.3. Moreover, many algorithms are available
to solve the linearly constrained best approximation problem for µT (x).
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Theorem 6.1 (Computable Backward Error Estimate).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
⇒ For the numerical problem F (y, x) = 0 with data y0 and exact solution x0,

there is a neighborhood of x0 in which the size of the minimal backward
error corresponding to an approximate solution x ≈ x0 can be estimated by
solving the linearly constrained optimization problems

µT (x) = min
∆y : D1 F (y0, x)∆y = F (y0, x)

‖∆y‖

= max
f : ‖D1 F (y0, x)∗f‖ ≤ 1

f(F (y0, x)) .

This value estimates the minimal size of the backward error in both the
differential and rational senses of Definitions 2.1 and 2.3.

Proof. This combines Theorems 3.11, 4.4 and Corollary 2.8. �

The second estimate explains what about a numerical problem governs the min-
imal size of its backward errors. The explanation involves a class of norms that
has been used in already the proof of Theorem 5.1. If a linear transformation
T : Rm → Rp is onto, then its adjoint T ∗ is one-to-one, so ‖T ∗f‖ defines a norm
on the dual space, (Rp)∗. The dual of this norm, viewed as a norm on Rp, is given
by the following construction.

Lemma 6.2. If a linear transformation T : Rm → Rp is onto, then

‖v‖T := max
f : ‖T∗f‖ ≤ 1

f(v) ,

is a norm on Rp

All of Table 4’s estimates for µ(x) can be expressed in terms of Lemma 6.2’s
notation,

µT (x) = ‖F (y0, x)‖D1 F (y0,x)

µ0(x) = ‖F (y0, x)‖D1 F (y0,x0)

µ`(x) = ‖D2F (y0, x0)(x− x0)‖D1 F (y0,x0) .

The expression for µ0(x) is special because its norm, ‖ · ‖D1 F (y0,x0), is independent
of x, and because the quantity inside, F (y0, x), is the numerical problem’s resid-
ual. Thus, up to a first-order differential approximation, the minimal size of the
backward error is simply a norm of the residual. It often happens that this norm
is unique.

Theorem 6.3 (Canonical Backward Error Estimate).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and suppose

that both D1F (y0, x0) and D2F (y0, x0) are onto.
⇒ The only member of µ(x)’s rational equivalence class that is an

x-invariant norm of F (y0, x) is µ0(x).

Proof. Suppose µ(x) '÷x0
‖F (y0, x)‖0 for some norm, ‖ · ‖0, that does not depend

on x. Since '÷x0
is an equivalence relation, and µ0(x) '÷x0

µ(x) by Theorems 3.11
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and 6.4, therefore ‖F (y0, x)‖D1 F (y0,x0) = µ0(x) '÷x0
‖F (y0, x)‖0. This means, for

every ε > 0 there is a neighborhood Nx0(ε) of x0, such that for every x ∈ Nx0(ε),

(17) (1− ε) ‖F (y0, x)‖0 ≤ ‖F (y0, x)‖D1 F (y0,x0) ≤ (1 + ε) ‖F (y0, x)‖0 .

By hypothesis D2F (y0, x0) : Rn → Rp is onto, so there is a subspace of Rn to
which the restriction of this linear transformation is an isomorphism. Moreover, Rn

can be represented as the sum of this subspace and any complementary subspace.
Without loss of generality then, assume that F is a function with domain D ⊆
Rm×Rn−p×Rp for which F (y0, w0, v0) = 0 and D3F (y0, w0, v0) is an isomorphism.
In this notation, the former variables “x” are now “(w, v).”

The inversion theorem says the function defined by f(v) = F (y0, w0, v) is an
homeomorphism between a neighborhood of v0 and a neighborhood, N0, of F (y0, w0, v0) =
0. If u ∈ Rp, then αu ∈ N0 for all sufficiently small α, because N0 is a neighborhood
of 0. Also (w0, f

−1(αu)) ∈ Nx0(ε) for all sufficiently small α, because Nx0(ε) is a
neighborhood of x0 = (w0, v0) = (w0, f

−1(0)).
Choose α 6= 0 for which both αu ∈ N0 and (w0, f

−1(αu)) ∈ Nx0(ε). The latter
means that equation (17) can be applied. Since F (y0, w0, f

−1(αu)) = f(f−1(αu)) =
αu, therefore equation (17) is

(1− ε) ‖αu‖0 ≤ ‖αu‖D1 F (y0,x0) ≤ (1 + ε) ‖αu‖0 .

Hence ‖u‖0 = ‖u‖D1 F (y0,x0) because ε is arbitrary and α 6= 0. Hence ‖ · ‖0 =
‖ · ‖D1 F (y0,x0) because u is arbitrary. �

6.2. Third Equivalence and Directional Derivatives. For the distance be-
tween a point y0 ∈ Rn and a parameterized set S(x) = {y : F (y, x) = 0}, the
directional differentiability with respect to the parameter x follows from Table 4’s
problem (P`)max. Before discussing differentiability it is therefore necessary to es-
tablish the equivalence of this problem to the table’s others, thereby completing
the table.

Theorem 6.4 ((P0)max ⇔ (P`)max).
• In addition to Hypothesis 2.5, suppose that F (y0, x0) = 0, and that

D1F (y0, x0) is onto.
⇒ There is a neighborhood of x0 where both of Table 4’s optimization

problems (P0)max and (P`)max are well-defined. Their values are
differentially equivalent at x0 in the sense of Definition 2.1.

Proof. Let ‖·‖T be Lemma 6.2’s norm for the linear transformation T = D1F (y0, x0).
Let Tx0(y, x) = D2F (y, x0)(x − x0) + F (y, x0) be the linear function parameter-
ized by y whose graph is tangent to F (y, x)’s at x = x0. (Note this is not the
Ty0 of Definition 2.5.) In this notation, µ0(x)max = ‖F (y0, x)‖T and µ`(x)max =
‖Tx0(y0, x)‖T . Thus by the triangle inequality,∣∣µ0(x)max − µ`(x)max

∣∣ ≤ ‖F (y0, x)− Tx0(y0, x)‖T ,

so

lim
x → x0

|µ0(x)max − µ`(x)max|
‖x− x0‖

≤ lim
x → x0

‖F (y0, x)− Tx0(y0, x)‖T

‖x− x0‖
= 0 ,

because F is continuously Fréchet differentiable. �

The directional differentiability, with respect to x, of the distance between y0

and S(x) is established in the following sense.
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Definition 6.5 (Fréchet Directional Derivative [47, p. 479, eqn. 3]). Let f(x) be
a function among normed linear spaces, and let h(x) be a positive homogeneous
function among the same. That is, h(tx) = th(x) when t ≥ 0. If

lim
∆x→0

‖f(x0 + ∆x)− f(x0)− h(∆x)‖
‖∆x‖

= 0 ,

then f is directionally differentiable at x0 with derivative h(∆x) in direction ∆x.
Shapiro [47] discusses variations of this and other definitions (Gâteaux, Hadamard).

The following theorem extends equation (1) to arbitrary norms under weaker
differential hypotheses than those of [6, pp. 434, theorem 5.42].

Theorem 6.6 (Directional Differentiability). Assume
• D ⊆ Rm × Rn is a neighborhood of (y0, x0),
• F : D → Rp is continuously differentiable,
• F (y0, x0) = 0,
• D1F (y0, x0) ∈ hom(Rm, Rp) is onto.

Let µ(x) be the distance from y0 to the set S(x) = {y : F (y, x) = 0},
µ(x) = min

y : F (y, x) = 0
‖y − y0‖ ,

and let ∆x ∈ Rn be a vector. The function µ(x) is Fréchet directionally differen-
tiable at x0. The derivative in the direction ∆x is

(18) µ`(x0 + ∆x) = min
∆y : DF (y0, x0)(∆y, ∆x) = 0

‖∆y‖ .

Proof. Let ‖·‖T be Lemma 6.2’s norm for the linear transformation T = D1F (y0, x0).
With this notation and by Theorem 4.4, equation (18)’s function µ`(x0+∆x) can be
expressed as ‖D2F (y0, x0)∆x‖T . This is a “positive homogeneous function” of ∆x
in Definition 6.5’s terminology. Moreover, µ(x) '∂

x0
µ`(x) by all the theorems (prin-

cipally 3.11, 5.1, and 6.4) that establish Table 4’s equivalences. For x = x0 + ∆x,
since µ(x0) = 0, the definition of the differential equivalence µ(x) '∂

x0
µ`(x) in

Definition 2.1’s equation (3) is exactly Definition 6.5’s limit. �

7. Conclusion

The first-order sensitivity of a metric projection has been studied, for a set
defined by parameterized equality constraints, by altering the set in ways that
keep the optimum-value function in an equivalence class of functions that have
identical first-order differential properties. The utility of this approach has been
demonstrated by estimating optimal backward errors in numerical analysis, and
by evaluating the directional derivatives of the distance between a point and a
perturbable set under weaker differential hypotheses than previously considered in
optimization theory.

Whether the method of performing sensitivity analyses in terms of equivalence
relations can be applied more generally suggests the following questions. The first
regards a topic not treated in this paper, the parameterized solution function.

(1) For the problems in Table 4, let y∗(x) attain the minimum µ∗(x). Is it
possible to establish differential equivalences among the solution functions,
y∗(x)? This is not trivial because Table 1 shows that dist(y0, S) may be
differentiable (in the table’s case, with respect to y0) when PS(y0) is not.
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The next questions regard further weakening the hypotheses on the function F .
This addresses the generality of the proofs used in this paper.

(2) The partial derivatives of F with respect to the parametric variable x,
D2F , appear only in the final row of Table 4. Can equivalences among the
functions in the other rows be obtained if F is just continuous with respect
to x?

(3) Can Table 4’s blanket assumption that D1F (y0, x0) is onto be relaxed for
any of the equivalences?

The greatest interest lies in establishing equivalences among the values of opti-
mization problems other than metric projections, onto sets defined with other than
equality constraints, and at points x0 other than where the optimal value vanishes.

(4) Can equivalences be established among the minima in Table 4 if their com-
mon objective function, ‖y − y0‖, is replaced by:
(a) f(y)− f(y0), or perhaps ‖f(y)− f(y0)‖, for some function f ,
(b) f(y, x)− f(y0, x), or perhaps ‖f(y, x)− f(y0, x)‖,

(5) What optimization problems are equivalent to

min
y : F (y, x) ∈ C

‖y − y0‖ ,

where C is closed and convex? When this construction enforces simple
inequality constraints then it reduces to the equality constraints treated in
this paper provided only active constraints need be considered.

(6) Can equivalences at x0 be established among the minima in Table 4 without
the hypothesis F (y0, x0) = 0? In view of the second column in Table 2 it
would seem that additional hypotheses may be necessary.

Equivalence relations among functions that enforce various kinds of approximations
are the subject of the next four questions.

(7) What exactly is the relationship between the directional and rational equiv-
alences of Definitions 2.1 and 2.3? Note that Corollary 2.8 can be inter-
preted as asserting that a rational equivalence class for a certain kind of
function is contained in a differential equivalence class.

(8) Is there an equivalence relation for functions into a normed linear space
analogous to Definition 2.3’s rational equivalence for real-valued functions?

(9) Can equivalence relations be used to investigate other perturbational prop-
erties? Equivalences for studying second order sensitivities can be found in
the papers of Shapiro [44] [46].

(10) Can Theorem 6.4 be improved to assert rational equivalence between the
optimal value in the final row of Table 4 and the others?

It would be useful to know if this type of perturbation analysis can be used as well
in function spaces.

(11) Can the results of this paper be established in function spaces, that is, in
infinite dimensional spaces? In view of Section 1.1 and Table 2, it may be
best to begin with Hilbert spaces.

Finally, the parameterized versions of familiar theorems in real analysis that support
this approach to perturbation analysis, and in particular the collocation theorem,
beg the following questions.
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(12) Do the constructions (y, x) 7→ (yT , x) or (y, x) 7→ (yf , x) in the proof of
Lemma 3.10 lead to immediate proofs of parameterized implicit or inverse
function theorems?

(13) If the answer to the previous question is affirmative, then what is the nature
of the functional relationship between the parameter and the associated
implicit function?
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